Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961595

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the first exon of the HTT gene encoding huntingtin. Prior reports have established a correlation between CAG expanded HTT and altered gene expression. However, the mechanisms leading to disruption of RNA processing in HD remain unclear. Here, our analysis of the reported HTT protein interactome identifies interactions with known RNA-binding proteins (RBPs). Total, long-read sequencing and targeted RASL-seq of RNAs from cortex and striatum of the HD mouse model R6/2 reveals increased exon skipping which is confirmed in Q150 and Q175 knock-in mice and in HD human brain. We identify the RBP TDP-43 and the N6-methyladenosine (m6A) writer protein methyltransferase 3 (METTL3) to be upstream regulators of exon skipping in HD. Along with this novel mechanistic insight, we observe decreased nuclear localization of TDP-43 and cytoplasmic accumulation of phosphorylated TDP-43 in HD mice and human brain. In addition, TDP-43 co-localizes with HTT in human HD brain forming novel nuclear aggregate-like bodies distinct from mutant HTT inclusions or previously observed TDP-43 pathologies. Binding of TDP-43 onto RNAs encoding HD-associated differentially expressed and aberrantly spliced genes is decreased. Finally, m6A RNA modification is reduced on RNAs abnormally expressed in striatum from HD R6/2 mouse brain, including at clustered sites adjacent to TDP-43 binding sites. Our evidence supports TDP-43 loss of function coupled with altered m6A modification as a novel mechanism underlying alternative splicing/unannotated exon usage in HD and highlights the critical nature of TDP-43 function across multiple neurodegenerative diseases.

2.
Nat Neurosci ; 24(8): 1089-1099, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34083786

RESUMO

Methods to enhance adult neurogenesis by reprogramming glial cells into neurons enable production of new neurons in the adult nervous system. Development of therapeutically viable approaches to induce new neurons is now required to bring this concept to clinical application. Here, we successfully generate new neurons in the cortex and dentate gyrus of the aged adult mouse brain by transiently suppressing polypyrimidine tract binding protein 1 using an antisense oligonucleotide delivered by a single injection into cerebral spinal fluid. Radial glial-like cells and other GFAP-expressing cells convert into new neurons that, over a 2-month period, acquire mature neuronal character in a process mimicking normal neuronal maturation. The new neurons functionally integrate into endogenous circuits and modify mouse behavior. Thus, generation of new neurons in the dentate gyrus of the aging brain can be achieved with a therapeutically feasible approach, thereby opening prospects for production of neurons to replace those lost to neurodegenerative disease.


Assuntos
Giro Denteado , Células Ependimogliais , Neurogênese/fisiologia , Neurônios , Proteína de Ligação a Regiões Ricas em Polipirimidinas/antagonistas & inibidores , Animais , Reprogramação Celular/fisiologia , Giro Denteado/citologia , Giro Denteado/fisiologia , Células Ependimogliais/citologia , Células Ependimogliais/fisiologia , Camundongos , Neurônios/citologia , Neurônios/fisiologia , Oligonucleotídeos Antissenso
3.
PLoS Negl Trop Dis ; 14(9): e0008608, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32925918

RESUMO

The receptor Signaling Lymphocyte-Activation Molecule Family 1 (SLAMF1) controls susceptibility to Infection by the lethal Trypanosoma cruzi Y strain. To elucidate whether genetic diversity of the parasite was related with disease susceptibility, we further analyzed the role of SLAMF1 using 6 different Trypanosoma cruzi strains including Y. The interaction of SLAMF1 receptor with T. cruzi was evidenced by fluorescence microscopy, flow cytometry and quantitative PCR. All the strains, except VFRA, showed a decrease in parasite load in infected macrophages in Slamf1-/- compared to BALB/c. In macrophages gene expression NADPH oxidase (NOX2), and reactive oxygen species (ROS) production increased in Slamf1-/- compared to BALB/c in 5 out of 6 strains. However, Slamf1-/-macrophages infected with VFRA strain exhibited a divergent behavior, with higher parasite load, lower NOX2 expression and ROS production compared to BALB/c. Parasitological and immunological studies in vivo with Y strain showed that in the absence of SLAMF1 the immune response protected mice from the otherwise lethal Y infection favoring a proinflammatory response likely involving CD4, CD8, dendritic cells and classically activated macrophages. In the case of VFRA, no major changes were observed in the absence of SLAMF1. Thus, the results suggest that the T. cruzi affects SLAMF1-dependent ROS production, controlling parasite replication in macrophages and affecting survival in mice in a strain-dependent manner. Further studies will focus in the identification of parasite molecules involved in SLAMF1 interaction to explain the immunopathogenesis of the disease.


Assuntos
Macrófagos/parasitologia , Espécies Reativas de Oxigênio/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Trypanosoma cruzi/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Doença de Chagas/imunologia , Chlorocebus aethiops , Células Dendríticas/imunologia , Suscetibilidade a Doenças/imunologia , Células HEK293 , Coração/parasitologia , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Miocárdio/patologia , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Carga Parasitária , Células Vero
5.
Neuron ; 100(4): 816-830.e7, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30344044

RESUMO

Through the generation of humanized FUS mice expressing full-length human FUS, we identify that when expressed at near endogenous murine FUS levels, both wild-type and ALS-causing and frontotemporal dementia (FTD)-causing mutations complement the essential function(s) of murine FUS. Replacement of murine FUS with mutant, but not wild-type, human FUS causes stress-mediated induction of chaperones, decreased expression of ion channels and transporters essential for synaptic function, and reduced synaptic activity without loss of nuclear FUS or its cytoplasmic aggregation. Most strikingly, accumulation of mutant human FUS is shown to activate an integrated stress response and to inhibit local, intra-axonal protein synthesis in hippocampal neurons and sciatic nerves. Collectively, our evidence demonstrates that human ALS/FTD-linked mutations in FUS induce a gain of toxicity that includes stress-mediated suppression in intra-axonal translation, synaptic dysfunction, and progressive age-dependent motor and cognitive disease without cytoplasmic aggregation, altered nuclear localization, or aberrant splicing of FUS-bound pre-mRNAs. VIDEO ABSTRACT.


Assuntos
Esclerose Lateral Amiotrófica/genética , Axônios/fisiologia , Demência Frontotemporal/genética , Mutação com Perda de Função/genética , Biossíntese de Proteínas/fisiologia , Proteína FUS de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Axônios/patologia , Células Cultivadas , Feminino , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Proteína FUS de Ligação a RNA/biossíntese
6.
PLoS Negl Trop Dis ; 12(1): e0006179, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29337988

RESUMO

Chagas disease caused by Trypanosoma cruzi is a neglected disease that affects about 7 million people in Latin America, recently emerging on other continents due to migration. As infection in mice is characterized by depletion of plasma L-arginine, the effect on infection outcome was tested in mice with or without L-arginine supplementation and treatment with 1400W, a specific inhibitor of inducible nitric oxide synthase (iNOS). We found that levels of L-arginine and citrulline were reduced in the heart and plasma of infected mice, whereas levels of asymmetric dimethylarginine, an endogenous iNOS inhibitor, were higher. Moreover, L-arginine supplementation decreased parasitemia and heart parasite burden, improving clinical score and survival. Nitric oxide production in heart tissue and plasma was increased by L-arginine supplementation, while pharmacological inhibition of iNOS yielded an increase in parasitemia and worse clinical score. Interestingly, electrocardiograms improved in mice supplemented with L-arginine, suggesting that it modulates infection and heart function and is thus a potential biomarker of pathology. More importantly, L-arginine may be useful for treating T. cruzi infection, either alone or in combination with other antiparasitic drugs.


Assuntos
Arginina/administração & dosagem , Doença de Chagas/tratamento farmacológico , Doença de Chagas/patologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Doença de Chagas/mortalidade , Modelos Animais de Doenças , Eletrocardiografia , Camundongos Endogâmicos BALB C , Miocárdio/patologia , Carga Parasitária , Plasma/química , Análise de Sobrevida , Resultado do Tratamento
7.
Sci Rep ; 7(1): 8893, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827716

RESUMO

The extreme genetic diversity of the protozoan Trypanosoma cruzi has been proposed to be associated with the clinical outcomes of the disease it provokes: Chagas disease (CD). To address this question, we analysed the similarities and differences in the CD pathophysiogenesis caused by different parasite strains. Using syngeneic mice infected acutely or chronically with 6 distant parasite strains, we integrated simultaneously 66 parameters: parasite tropism (7 parameters), organ and immune responses (local and systemic; 57 parameters), and clinical presentations of CD (2 parameters). While the parasite genetic background consistently impacts most of these parameters, they remain highly variable, as observed in patients, impeding reliable one-dimensional association with phases, strains, and damage. However, multi-dimensional statistics overcame this extreme intra-group variability for each individual parameter and revealed some pathophysiological patterns that accurately allow defining (i) the infection phase, (ii) the infecting parasite strains, and (iii) organ damage type and intensity. Our results demonstrated a greater variability of clinical outcomes and host responses to T. cruzi infection than previously thought, while our multi-parametric analysis defined common pathophysiological patterns linked to clinical outcome of CD, conserved among the genetically diverse infecting strains.


Assuntos
Doença de Chagas/parasitologia , Interações Hospedeiro-Parasita , Trypanosoma cruzi/fisiologia , Biomarcadores , Doença de Chagas/genética , Doença de Chagas/imunologia , Doença de Chagas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Perfilação da Expressão Gênica , Variação Genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Especificidade de Órgãos , Tropismo , Trypanosoma cruzi/classificação
8.
Neuron ; 94(1): 48-57.e4, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28384474

RESUMO

Onset of neurodegenerative disorders, including Huntington's disease, is strongly influenced by aging. Hallmarks of aged cells include compromised nuclear envelope integrity, impaired nucleocytoplasmic transport, and accumulation of DNA double-strand breaks. We show that mutant huntingtin markedly accelerates all of these cellular phenotypes in a dose- and age-dependent manner in cortex and striatum of mice. Huntingtin-linked polyglutamine initially accumulates in nuclei, leading to disruption of nuclear envelope architecture, partial sequestration of factors essential for nucleocytoplasmic transport (Gle1 and RanGAP1), and intranuclear accumulation of mRNA. In aged mice, accumulation of RanGAP1 together with polyglutamine is shifted to perinuclear and cytoplasmic areas. Consistent with findings in mice, marked alterations in nuclear envelope morphology, abnormal localization of RanGAP1, and nuclear accumulation of mRNA were found in cortex of Huntington's disease patients. Overall, our findings identify polyglutamine-dependent inhibition of nucleocytoplasmic transport and alteration of nuclear integrity as a central component of Huntington's disease.


Assuntos
Transporte Ativo do Núcleo Celular , Envelhecimento/metabolismo , Córtex Cerebral/metabolismo , Proteína Huntingtina/metabolismo , Neostriado/metabolismo , Membrana Nuclear/metabolismo , Peptídeos/metabolismo , Adulto , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Núcleo Celular , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , Adulto Jovem
9.
PLoS One ; 12(3): e0173456, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28362822

RESUMO

BACKGROUND: Fascioliasis is a severe zoonotic disease of worldwide extension caused by liver flukes. In human fascioliasis hyperendemic areas, reinfection and chronicity are the norm and anemia is the main sign. Herein, the profile of the Th1/Th2/Th17/Treg expression levels is analyzed after reinfection, correlating them with their corresponding hematological biomarkers of morbidity. METHODOLOGY/PRINCIPAL FINDINGS: The experimental design reproduces the usual reinfection/chronicity conditions in human fascioliasis endemic areas and included Fasciola hepatica primo-infected Wistar rats (PI) and rats reinfected at 8 weeks (R8), and at 12 weeks (R12), and negative control rats. In a cross-sectional study, the expression of the genes associated with Th1 (Ifng, Il12a, Il12b, Nos2), Th2 (Il4, Arg1), Treg (Foxp3, Il10, Tgfb, Ebi3), and Th17 (Il17) in the spleen and thymus was analyzed. After 20 weeks of primary infection, PI did not present significant changes in the expression of those genes when compared to non-infected rats (NI), but an increase of Il4, Arg1 and Ifng mRNA in the spleen was observed in R12, suggesting the existence of an active mixed Th1/Th2 systemic immune response in reinfection. Foxp3, Il10, Tgfb and Ebi3 levels increased in the spleen in R12 when compared to NI and PI, indicating that the Treg gene expression levels are potentiated in chronic phase reinfection. Il17 gene expression levels in R12 in the spleen increased when compared to NI, PI and R8. Gene expression levels of Il10 in the thymus increased when compared to NI and PI in R12. Ifng expression levels in the thymus increased in all reinfected rats, but not in PI. The clinical phenotype was determined by the fluke burden, the rat body weight and the hemogram. Multivariate mathematical models were built to describe the Th1/Th2/Th17/Treg expression levels and the clinical phenotype. In reinfection, two phenotypic patterns were detected: i) one which includes only increased splenic Ifng expression levels but no Treg expression, correlating with severe anemia; ii) another which includes increased splenic Ifng and Treg expression levels, correlating with a less severe anemia. CONCLUSIONS/SIGNIFICANCE: In animals with established F. hepatica infection a huge increase in the immune response occurs, being a mixed Th2/Treg associated gene expression together with an expression of Ifng. Interestingly, a Th17 associated gene expression is also observed. Reinfection in the chronic phase is able to activate a mixed immune response (Th1/Th2/Th17/Treg) against F. hepatica but T and B proliferation to mitogens is strongly suppressed in all infected rats vs control in the advanced chronic phase independently of reinfection The systemic immune response is different in each group, suggesting that suppression is mediated by different mechanisms in each case. Immune suppression could be due to the parasite in PI and R8 rats and the induction of suppressive cells such as Treg in R12. This is the first study to provide fundamental insight into the immune profile in fascioliasis reinfection and its relation with the clinical phenotypes of anemia.


Assuntos
Anemia/imunologia , Fasciola hepatica/imunologia , Fasciola hepatica/patogenicidade , Células Th1/metabolismo , Células Th17/metabolismo , Células Th2/metabolismo , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Estudos Transversais , Fatores de Transcrição Forkhead/metabolismo , Interleucina-10/metabolismo , Interleucinas/metabolismo , Masculino , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Caramujos/parasitologia , Fator de Crescimento Transformador beta1/metabolismo
10.
Oncotarget ; 8(11): 17551-17561, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28147332

RESUMO

Thymic atrophy occurs during infection being associated with apoptosis of double positive (DP) and premature exit of DP and double negative (DN) thymocytes. We observed for the first time that a significant bone marrow aplasia and a decrease in common lymphoid progenitors (CLPs) preceded thymic alterations in mice infected with Trypanosoma cruzi. In addition, depletion of the DN2 stage was previous to the DN1, indicating an alteration in the differentiation from DN1 to DN2 thymocytes. Interestingly, infected mice deficient in IL-6 expression showed higher numbers of DP and CD4+ thymocytes than wild type infected mice, while presenting similar percentages of DN1 thymocytes. Moreover, the drop in late differentiation stages of DN thymocytes was partially abrogated in comparison with wild type littermates. Thus, our results suggest that thymic atrophy involves a drop in CLPs production in bone marrow and IL-6-dependent and independent mechanisms that inhibits the differentiation of DN thymocytes.


Assuntos
Diferenciação Celular/imunologia , Doença de Chagas/patologia , Interleucina-6/metabolismo , Linfopoese/imunologia , Timócitos/patologia , Timo/patologia , Animais , Atrofia , Medula Óssea/patologia , Doença de Chagas/imunologia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Marcação In Situ das Extremidades Cortadas , Células Progenitoras Linfoides/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trypanosoma cruzi
12.
PLoS Negl Trop Dis ; 9(8): e0004025, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26305786

RESUMO

Inflammation plays an important role in the pathophysiology of Chagas disease, caused by Trypanosoma cruzi. Prostanoids are regulators of homeostasis and inflammation and are produced mainly by myeloid cells, being cyclooxygenases, COX-1 and COX-2, the key enzymes in their biosynthesis from arachidonic acid (AA). Here, we have investigated the expression of enzymes involved in AA metabolism during T. cruzi infection. Our results show an increase in the expression of several of these enzymes in acute T. cruzi infected heart. Interestingly, COX-2 was expressed by CD68+ myeloid heart-infiltrating cells. In addition, infiltrating myeloid CD11b+Ly6G- cells purified from infected heart tissue express COX-2 and produce prostaglandin E2 (PGE2) ex vivo. T. cruzi infections in COX-2 or PGE2-dependent prostaglandin receptor EP-2 deficient mice indicate that both, COX-2 and EP-2 signaling contribute significantly to the heart leukocyte infiltration and to the release of chemokines and inflammatory cytokines in the heart of T. cruzi infected mice. In conclusion, COX-2 plays a detrimental role in acute Chagas disease myocarditis and points to COX-2 as a potential target for immune intervention.


Assuntos
Doença de Chagas/imunologia , Ciclo-Oxigenase 2/imunologia , Dinoprostona/imunologia , Miocardite/imunologia , Receptores de Prostaglandina E Subtipo EP2/imunologia , Trypanosoma cruzi/fisiologia , Animais , Doença de Chagas/complicações , Doença de Chagas/enzimologia , Doença de Chagas/genética , Ciclo-Oxigenase 2/genética , Citocinas/genética , Citocinas/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocardite/etiologia , Miocardite/genética , Miocárdio/enzimologia , Miocárdio/imunologia , Receptores de Prostaglandina E Subtipo EP2/genética , Trypanosoma cruzi/imunologia
13.
PLoS Negl Trop Dis ; 8(11): e3337, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25412247

RESUMO

Chagas disease is caused by Trypanosoma cruzi infection, being cardiomyopathy the more frequent manifestation. New chemotherapeutic drugs are needed but there are no good biomarkers for monitoring treatment efficacy. There is growing evidence linking immune response and metabolism in inflammatory processes and specifically in Chagas disease. Thus, some metabolites are able to enhance and/or inhibit the immune response. Metabolite levels found in the host during an ongoing infection could provide valuable information on the pathogenesis and/or identify deregulated metabolic pathway that can be potential candidates for treatment and being potential specific biomarkers of the disease. To gain more insight into those aspects in Chagas disease, we performed an unprecedented metabolomic analysis in heart and plasma of mice infected with T. cruzi. Many metabolic pathways were profoundly affected by T. cruzi infection, such as glucose uptake, sorbitol pathway, fatty acid and phospholipid synthesis that were increased in heart tissue but decreased in plasma. Tricarboxylic acid cycle was decreased in heart tissue and plasma whereas reactive oxygen species production and uric acid formation were also deeply increased in infected hearts suggesting a stressful condition in the heart. While specific metabolites allantoin, kynurenine and p-cresol sulfate, resulting from nucleotide, tryptophan and phenylalanine/tyrosine metabolism, respectively, were increased in heart tissue and also in plasma. These results provide new valuable information on the pathogenesis of acute Chagas disease, unravel several new metabolic pathways susceptible of clinical management and identify metabolites useful as potential specific biomarkers for monitoring treatment and clinical severity in patients.


Assuntos
Doença de Chagas/complicações , Doença de Chagas/metabolismo , Metaboloma/fisiologia , Miocardite/etiologia , Miocardite/metabolismo , Animais , Cresóis/metabolismo , Feminino , Redes e Vias Metabólicas/fisiologia , Metabolômica , Camundongos , Camundongos Endogâmicos BALB C , Ésteres do Ácido Sulfúrico/metabolismo , Trypanosoma cruzi
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...